Section 4.3: Quadratic functions and their properties
\#1-12: For each problem do the following

1) $f(x-3)+4$
a) Find the indicated function and describe the transformation as compared to the function $f(x)=x^{2}$, specifically state if the graph is shifted left, right, up, down and if any reflection has occurred

$$
f(x-3)+4=(x-3)^{2}+4
$$

b) make a table of values and sketch a graph.
c) state the domain and range of the function

All PArABola Domain $(-\infty, \infty) \operatorname{Rang}[4, \infty) \frac{1}{2}$
d) state the intervals where the function in increasing and decreasing

FAC $(3, \infty) \operatorname{Dec}(-\infty, 3)$
e) state if the function has a local maximum point, if it does state the local maximum value
no max
f) state if the function has a local minimum point, if it does state the local minimum value local minimum point, L.mi.y $y=4$ when $x=3$

3) $2 f(x+3)-4$
a) Find the indicated function and describe the transformation as compared to the function $f(x)=x^{2}$, specifically state if the graph is shifted left, right, up, down and if any reflection has occurred $2 f(x+3)-4=2(x+3)^{2}-4$
b) mate et able of values and sestet a graph. I Stretched, left 3, Dawn 4 c) state the domain and range of
er f he function $(-\infty, \infty)$ Range $[-4, \infty)$
d) state the intervals where the function in increasing and decreasing $(-3, \infty)$
e) state if the function has a local maximum point, if it does state the local maximum
value
no re
f) state if the function has a local minimum point, if it does state the local minimum value local Minimum point $(-3,-4)$
L.M.:., $y=-4$ when $x=-3$

x	-5	-4	-3	-2	-1
$f(x)$	-4	-2	-4	-2	-4

Table $2(x+3)^{2}-4$

change Sign

$$
x=-3
$$

middle x-colum
5) $\frac{1}{2} f(x+4)$
a) Find the indicated function and describe the transformation as compared to the function $f(x)=x^{2}$, specifically state if the graph is shifted left, right, up, down and if any reflection has occurred $\frac{1}{2} f(x+4)-6=\frac{1}{2}(x+4)^{2}-6$
b) make a table of values and sketch a graph. p compressed, lefT 4, Down 6
c) state the domain and range of the function
d) state the intervals where the function in increasing and decreasing

$$
\begin{aligned}
& \text { e intervals why } \\
& \text { I } _ \text {. } \\
& \text { the function } \\
& \text { none }
\end{aligned}
$$

f) state if the function has a local minimum point, if it does state the local minimum value locAl Minimum point $(-4,-6)$

$$
\text { L.Mi. } v y=-6 \text { when } x=-4
$$

x	-6	-5	-4	-3	-4
$\mathrm{f}(\mathrm{x})$	-4	-5.5	-6	-5	-4

$$
x=-4 \text { middle }
$$

7) $-2 f(x)+3$
a) Find the indicated function and describe the transformation as compared to the function $f(x)=x^{2}$, specifically state if the graph is shifted left, right, up, down and if any reflection has occurred $-2 f(x)+3=-2 x^{2}+3$
b) make a table of values and sketch a graph. See below
c) state the domain and range of the function

Domain $(-\infty, \infty)$ Range $(-\infty, 3]$
d) state the intervals where the function in increasing and decreasing
e) state if the function has a local maximum point, if it does state the local maximum value locAl maximum point $(0,3)$

ᄂ. $M a . y$ y $y=3$ when $x=0$
f) state if the function has a local minimum point, if it does state the local minimum value

x	-2	-		0	
$f(x)$	-5	1	3	1	-5

9) $-\frac{1}{4} f(x+5) \quad-2$
a) Find the indicated function and describe the transformation as compared to the function $f(x)=x^{2}$, specifically state if the graph is shifted left, right, up, down and if any reflection has occurred $-\frac{1}{4} f(x+5)-2=-\frac{1}{4}(x+5)^{2}-2$
b) make a table of values and sketch a graph.
c) state the domain and range of the function

d) state the intervals where the function in increasing and decreasing
e) state if the function has a local maximum point, if it does state the local maximum value
f) state if the function has a local minimum point, if it does state the local minimum value

x	-7	-6	-5	-4	-3
$f(x)$	-3	$-24 / 4$	-2	$-2^{1 / 4}$	-3

middle
11) $2 f(x+3)+4$
a) Find the indicated function and describe the transformation as compared to the function $f(x)=x^{2}$, specifically state if the graph is shifted left, right, up, down and if any reflection has occurred $2 f(x+3)+4=2(x+3)^{2}+4$
b) make a table of values and sketch a graph. Pstretches left 3 up 4

See below
c) state the domain and range of the function

$$
\left.\begin{array}{l}
\text { domain and range of the function } \\
\text { Domain }(-\infty, \infty) \\
R A_{n} g e \\
\text { Dom }
\end{array} 4, \infty\right)
$$

d) state the intervals where the function in increasing and decreasing

$$
\text { Inc }(-3, \infty) \text { De }(-\infty,-3)
$$

e) state if the function has a local maximum point, if it does state the local maximum value none.
f) state if the function has a local minimum point, if it does state the local minimum value $\quad l o c a l$ Minimum point $(-3,4)$

Lo Cal Minimum Valve $y=4$, when $x=-3$

x	-5	-4	-3	-2	-1
$f(x)$	12	6	4	6	12

\#13-24: For each problem do the following:
13) $f(x)=x^{2}+6 x+5$
a) Use completing the square to rewrite the problem in standard form
b) Describe the transformation as compared to the function $f(x)=x^{2}$ lefT 3 Down 4
c) Sketch a graph, make sure to label the vertex. You may use your calculator, instead of making a table of values to create your graph

from entcuator

$$
\begin{array}{l|l}
\hline-5 & 0 \\
-4 & -3 \\
-3 & -4 \\
-2 & -3 \\
-1 & 0
\end{array}
$$

a)

$$
\begin{aligned}
& f(x)=\left(x^{2}+6 x+c\right)+5-3 \\
& c=(6 / 2)^{2}=(3)^{2}=9 \\
& f(x)=\left(x^{2}+6 x+9\right)+5-9 \\
& f(x)=(x+3)^{2}-4
\end{aligned}
$$

15) $k(x)=x^{2}-4 x+2$
a) Use completing the square to rewrite the problem in standard form
b) Describe the transformation as compared to the function $f(x)=x^{2}$
c) Sketch a graph, make sure to label the vertex. You may use your calculator, instead of making a table of values to create your graph

16) $f(x)=2 x^{2}+8 x-3$
a) Use completing the square to rewrite the problem in standard form
b) Describe the transformation as compared to the function $f(x)=x^{2}$
c) Sketch a graph, make sure to label the vertex. You may use your calculator, instead
of making a table of values to create your graph

Table from calculate

-4	-3
-3	-9
-2	-11
-1	-9
0	-3

$$
\text { 17a) } \begin{aligned}
f(x)= & 2\left(x^{2}+4 x+c\right)-3-2 c \\
& c=\left(\frac{4}{2}\right)^{2}=(2)^{2}=4 \\
f(x) & =2\left(x^{2}+4 x+4\right)-3-2(4) \\
= & \frac{2(x+2)^{2}-3-8}{2(x+2)^{2}-11}
\end{aligned}
$$

19) $f(x)=-x^{2}+6 x+4$
a) Use completing the square to rewrite the problem in standard form
b) Describe the transformation as compared to the function $f(x)=x^{2}$
c) Sketch a graph, make sure to label the vertex. You may use your calculator, instead of making a table of values to create your graph

20) $k(x)=-2 x^{2}+12 x-7$
a) Use completing the square to rewrite the problem in standard form
b) Describe the transformation as compared to the function $f(x)=x^{2}$
reflect X-Axis, Stretch D Right 3 up Il
of making a table of values to create your graph
Table from Calculator

21) $f(x)=-3 x^{2}-12 x+1$
a) Use completing the square to rewrite the problem in standard form
b) Describe the transformation as compared to the function $f(x)=x^{2}$
c) sketch a graph, make sure to label the vertex. You may use your calculator, instead of making a table of values to create your graph

23a) $f(x)=-3\left(x^{2}+4 x+c\right)+1+3 c$

$$
\begin{aligned}
& c=\left(\frac{4}{2}\right)^{2}=(2)^{2}=4 \\
& f(x)=-3\left(x^{2}+4 x+4\right)+1+344 \\
& f(x)=-3(x+2)^{2}+1+12 \\
& f(x)=-3(x+2)^{2}+13
\end{aligned}
$$

\#25-32, determine the equation of the quadratic function

$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
h=1 \quad k=-4 \\
f(x)=a(x-1)^{2}+(-4) \\
f(x)=a(x-1)^{2}-4
\end{gathered}
$$

Point $(-2,14)$

$$
\begin{aligned}
& 14=a(-2-1)^{2}-4 \\
& 14=a(-3)^{2}-4 \\
& 14=9 a-4 \\
& \frac{+4}{18}=9 a \\
& 2=a \\
& f(x)=2(x-1)^{2}-4
\end{aligned}
$$

27)

$$
\begin{aligned}
& f(x)=a(x-h)^{2}+k \\
& h=-1 \quad k=5 \\
& f(x)=a(x-(-1))^{2}+5 \\
& f(x)=a(x+1)^{2}+5 \\
& (0,2) \\
& 2=a(0+1)^{2}+5 \\
& 2=a(1)+5 \\
& 2=a+5 \\
& -5=-5 \\
& -3=a \\
& f(x)=-3(x+1)^{2}+5
\end{aligned}
$$

29)

$$
\begin{aligned}
f(x) & =a(x-h)^{2}+k \\
h & =-2 \quad k=6
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=a(x-(-2))^{2}+6 \\
& f(x)=a(x+2)^{2}+6
\end{aligned}
$$

$(2,14)$

$$
\begin{aligned}
& f^{2}(x)=a(2+2)^{2}+6 \\
& 14=16=16 a+6 \\
& 14=6 \\
& \frac{-6}{\frac{8}{1}=\frac{16}{2}=a} \\
& f(x)=\frac{1}{2}(x+2)^{2}+6
\end{aligned}
$$

$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
h=-2 \quad k=3 \\
f(x)=a(x-(-2))^{2}+3 \\
f(x)=a(x+2)^{2}+3 \\
(2,-2) \\
x f^{2}(x) \\
-1=a(2+2)^{2}+3 \\
-\frac{3}{-4}=16 a \\
-\frac{4}{16}=a \\
-\frac{1}{4}=a \\
f(x)=-\frac{1}{4}(x+2)^{2}+3
\end{gathered}
$$

